RECOGNISING ACHIEVEMENT

2853 Polymers, Proteins and Steel

June 2004

Mark Scheme

The following annotations may be used when marking:

```
X = incorrect response (errors may also be underlined)
^ = omission mark
bod = benefit of the doubt (where professional judgement has been used)
ecf = error carried forward (in consequential marking)
con = contradiction (in cases where candidates contradict themselves in the
    same response)
sf = error in the number of significant figures
```

Abbreviations, annotations and conventions used in the Mark Scheme:

I	$=$ alternative and acceptable answers for the same marking
$;$	$=$ separates marking points
NOT	$=$ answers not worthy of credit
()	$=$ words which are not essential to gain credit
\quad (underlining)	$=$ key words which must be used
ecf	$=$ allow error carried forward in consequential marking
AW	$=$ alternative wording
ora	$=$ or reverse argument

Question	Expected Answers	Marks
1a(i)		2
a(ii)	Many/lots of monomers /molecules (accept long chain molecule) joined together; Small molecule/water/HCl is eliminated/ monomers have reactive groups at either end	2
b (i)	Permanent dipole - permanent dipole	1
b(ii)	Only interaction from C of carbonyl group on one chain to O on another ; $\mathrm{C}^{\delta+}$ correctly labelled on one chain $\mathrm{O}^{\delta-}$ labelled on the other chain.	2
c	M_{r} repeating unit = 192 (1); No of repeating units $=\frac{384000}{192}=2000 \quad($ ecf $)$	2
d	3 from: (Sorting out plastics) then melting/heating and remoulding or gives a specific use; Incineration /burning to produce energy/heat; Cracking/breaking down chains (to produce feedstock); Hydrolyse /converting back to monomers and repolymerising	3
		Total: 12
2a(i)	Order = 2; As $[\mathrm{NO}(\mathrm{g})]$ doubles and $\left[\mathrm{O}_{2}(\mathrm{~g})\right]$ kept constant rate quadruples/compares B and D or A and C	2
a(ii)	Order = 1; As $\left[\mathrm{O}_{2}(\mathrm{~g})\right]$ doubles and $[\mathrm{NO}(\mathrm{g})]$ kept constant rate doubles /compares A and B or C and D	2
a(iii)	$\begin{array}{\|ll\|} \hline \text { Rate }=\mathrm{k}\left[\mathrm{NO}(\mathrm{~g})^{2}\right]^{2}\left[\mathrm{O}_{2}(\mathrm{~g})\right]=2 \mathrm{marks} & \\ 3 \text { PARTS CORRECT=2 } & \\ 2 \text { PARTS CORRECT=1 } & \text { ecf from (i) and (ii) } \\ \hline \end{array}$	2
a(iv)	3 ecf from (iii)	1
b	First order: conc vs time graph - descending curve (1); roughly constant half life (1); rate vs conc - straight line positive slope (1); through origin (1)	4
		Total : 11

Question	Expected Answers	Marks
3a(i)	$K_{\mathrm{c}}=\left[\begin{array}{l} {\left[\mathrm{NO}^{2}\right]^{2}} \\ {\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]} \end{array} \quad[\text { products }] /[\text { reactants }]=1 \text { powers }=1\right.$	2
a(ii)	Equilibrium lies over to the left / reactants side	1
a(iii)	K_{c} will be higher; Equilibrium moves in favour of endothermic reaction/to take in energy; Plus 1 from: Temperature in car engine is higher; Equilibrium has shifted to the right/ because NO formed	3
b(i)	$\mathrm{Fe}+2 \mathrm{H}+\rightarrow \mathrm{Fe}^{2+}+\mathrm{H}_{2} \quad$ equation(1) balancing (no electrons) (1)	2
b(ii)	$\mathrm{Fe}_{2} \mathrm{O}_{3}$ (1) . $\mathrm{xH}_{2} \mathrm{O}$ (1) dependent on a formula of iron oxide	2
b(iii)	2 from: painting/coat with zinc oxide; greasing/oiling/ waxing; underseal; galvanising/ coat in zinc; chrome plating	2
c	Any 2: Iron is a non renewable/ finite resource; Saves energy/extraction costs/non- renewable fuel; Named environmental issue - eg saves landfill space	2
d	Magnesium or zinc; Has a more negative electrode potential ; Plus 2 from: will lose electrons (more readily); it is a stronger reducing agent; gets oxidised/reacts/corrodes in preference must be implied/ more reactive/ correct equation; replaced when worn away	4
e	2 uses 2 properties from (use should be appropriate to property) and different in each case. paper clip (1); - drawn into wires(1); construction (1); - strength (1); drill (1);-high melting point/ strong(1); cutlery(1);-resistant to corrosion/hard(1); underground pipes(1); -strength (1);	4
		Total: 22

4a	4 from: DNA consists of two(polynucleotide) chains/strands; In a double helix; *Each strand/chain/backbone is made of deoxyribose/sugar and phosphate groups (idea of a chain) NOT ribose; *Each chain has attached bases; *Bases linked by hydrogen bonding; *Specific/complementary bases are paired/e.g. A-T C-G (between chains) Points labelled * can be gained from a clearly labelled diagram Confusion with a chain of amino acids scores 3 max	4
b	An amino acid would be missing	1
c	1 mark for carboxylic acid group; 1 mark for amine group;	2
d(i)	ONLY Acyl chloride group circled	1
d(ii)		2
		Total:10

Clarification on the DNA answer- They must indicate that at AT C and G are bases for the last marking point. A pairs with T and C pairs with G is not enough (which is likely to be the case if they have just drawn a diagram)

Question	Expected Answers	Marks
5a(i)	$3 \mathrm{~d}^{9}$	1
a(ii)	It forms at least one ion/ Cu^{2+} in which the d subshell/orbital ; Is partially /incompletely filled	2
b	1 mark for both nitrogen atoms circled; 1 mark for all 40 - circled	2
c(i)	6×10^{-5}	1
cii	$\begin{aligned} & 6.00 \times 10^{-5} \times 63.5(1) \\ & \times 1000 / 25(1) \\ & \times 1000(1) \\ & 152 \mathrm{mg} \mathrm{dm}^{-3}(1) \text { must be } 3 \text { sf for mark allow ecf throughout } \\ & \hline \end{aligned}$	4
d	(Make up solutions) of known concentration of Cu^{2+}; 3 from: of different concentrations; suitable range; Choose suitable filter; Calibrate colorimeter/zero with water; measure absorbance/transmittance; Plot a calibration curve; read absorbance of sample; plus read value from graph At least 2 consecutive sentences with only one spelling mistake	$5+1$
e	2 from: catalysts; variable oxidation state; paramagnetic; high density; high mpt/bpt	2
		Total:18

Question	Expected Answers	Marks
6a(i)	Name of reagent: hydrochloric acid/ sodium hydroxide allow sulphuric acid; Conditions: Moderately concentrated (4-6M) ; reflux (must have sensible reagent)	3
a(ii)	Must have diagram with at least 1 label to score full marks : 4 from: Covered beaker; Paper with spot of solution above solvent; At end four spots; Develop with ninhydrin/iodine/copper nitrate; Compare to controls/work out R_{f} values	4
b	Amino acid: glycine; Explanation: does not have chiral/asymmetric carbon atom/carbon atom attached to four different groups owtte;	2
c(i)	Lysine $\xrightarrow[\text { Decreasing } \mathrm{pH}]{\text { alanine }}$ glutamic acidAll correct =1Recognition that NH_{2} is basic/ proton acceptor; Recognition that COOH is acidic/ proton donor; Comparison of numbers of these groups on all 3 amino acids	4
c(ii)	 Cl^{-}and $\mathrm{Na}^{+}=1$ dependent on correct structures $\begin{equation*} \mathrm{H}_{2} \mathrm{O}(1) \tag{1} \end{equation*}$	4
		Total:17

