

2853 Polymers, Proteins and Steel

June 2004

Mark Scheme

The following annotations may be used when marking:

- X = incorrect response (errors may also be underlined)
- ^ = omission mark
- bod = benefit of the doubt (where professional judgement has been used)
- ecf = error carried forward (in consequential marking)
- con = contradiction (in cases where candidates contradict themselves in the same response)
- sf = error in the number of significant figures

Abbreviations, annotations and conventions used in the Mark Scheme:

1	=	alternative and acceptable answers for the same marking
•	=	separates marking points
NOT	=	answers not worthy of credit
()	=	words which are not essential to gain credit
() (underlining) ecf	=	key words which <u>must</u> be used
ecf	=	allow error carried forward in consequential marking
AW		alternative wording
ora	=	or reverse argument

Question	Expected Answers	Marks
1a(i)	HO 1 mark for each carboxylic acid correctly attached to the benzene ring	2
a(ii)	Many/lots of monomers /molecules (accept long chain molecule) joined together; Small molecule/water/HCl is eliminated/ monomers have reactive groups at either end	2
b(i)	Permanent dipole – <u>permanent</u> dipole	1
b(ii)	Only <u>interaction</u> from C of carbonyl group on one chain to O on another ; C ^{δ^+} correctly labelled on one chain O ^{δ^-} labelled on the other chain.	2
С	M_r repeating unit = 192 (1); No of repeating units = $\frac{384000}{192}$ = 2000 (ecf)	2
d	3 from: (Sorting out plastics) then <u>melting/heating</u> and remoulding or gives a specific use; Incineration /burning <u>to produce energy/heat;</u> Cracking/breaking down chains (to produce feedstock); Hydrolyse /converting back to monomers and <u>repolymerising</u>	3
		Total: 12
2a(i)	Order = 2; As [NO(g)] doubles and $[O_2(g)]$ kept constant rate quadruples/compares B and D or A and C	2
a(ii)	Order = 1; As [O ₂ (g)] doubles and [NO(g)] kept constant rate doubles /compares A and B or C and D	2
a(iii)	Rate = k [NO(g)]² [O₂(g)] =2marks3 PARTS CORRECT=22 PARTS CORRECT=1ecf from (i) and (ii)	2
a(iv)	3 ecf from (iii)	1
b	First order: conc vs time graph - descending curve (1); roughly constant half life (1); rate vs conc - straight line positive slope (1); through origin (1)	4
		Total : 11

Question	Expected Answers	Marks
3a(i)	$K_c = [NO]^2$ [N ₂] [O ₂] [products] /[reactants] =1 powers =1	2
a(ii)	Equilibrium lies over to the left / reactants side	1
a(iii)	K _c will be higher; Equilibrium moves in favour of endothermic reaction/to take in energy; Plus 1 from: Temperature in car engine is higher;	3
	Equilibrium has shifted to the right/ because NO formed	
b(i)	Fe + 2H+ \rightarrow Fe ²⁺ + H ₂ equation(1) balancing (no electrons) (1)	2
b(ii)	Fe_2O_3 (1) $\cdot xH_2O$ (1) dependent on a formula of iron oxide	2
b(iii)	2 from: painting/coat with zinc oxide; greasing/oiling/ waxing; underseal; galvanising/ coat in zinc; chrome plating	2
C	Any 2: <u>Iron</u> is a non renewable/ finite resource; Saves energy/extraction costs/non- renewable fuel; Named environmental issue - eg saves landfill space	2
d	Magnesium or zinc; Has a <u>more negative</u> electrode <u>potential ;</u> Plus 2 from: will lose electrons (more readily); it is a stronger reducing agent; gets oxidised/reacts/corrodes in preference must be implied/ more reactive/ correct equation; replaced when worn away	4
e	2 uses 2 properties from (use should be appropriate to property) and different in each case. paper clip (1); - drawn into wires(1); construction (1); - strength (1); drill (1);-high melting point/ strong(1); cutlery(1);-resistant to corrosion/hard(1); underground pipes(1); -strength (1);	4
		Total: 22

4a	 4 from: DNA consists of two(polynucleotide) chains/strands; In a <u>double</u> helix; *Each strand/chain/backbone is made of deoxyribose/sugar and phosphate groups (idea of a chain) NOT ribose; *Each chain has <u>attached bases;</u> *Bases linked by hydrogen bonding; *Specific/complementary bases are paired/e.g. A-T C-G (between chains) Points labelled * can be gained from a <u>clearly</u> labelled diagram Confusion with a chain of amino acids scores 3 max 	4
b	An amino acid would be missing	1
С	1 mark for carboxylic acid group; 1 mark for amine group; $\downarrow \qquad \qquad$	2
d(i)	ONLY Acyl chloride group circled	1
d(ii)	$\begin{array}{c c} & & & \\ &$	2
	1 mark 1 mark	
		Total:10

Clarification on the DNA answer- They must indicate that at AT C and G are bases for the last marking point . **A pairs with T and C pairs with G is not enough** (which is likely to be the case if they have just drawn a diagram)

Question	Expected Answers	Marks
5a(i)	3 d ⁹	1
a(ii)	It forms at least one <u>ion</u> /Cu ²⁺ in which the <u>d subshell/orbital</u> ; Is partially /incompletely filled	
b	1 mark for both nitrogen atoms circled; 1 mark for all 4 O- circled	
c(i)	6 x 10 ⁻⁵	1
Cİİ	6.00 x 10^{-5} x 63.5(1) x 1000/25(1) x 1000 (1) 152mg dm ⁻³ (1) must be 3 sf for mark allow ecf throughout	4
d	(Make up solutions) of known <u>concentration</u> of Cu ²⁺ ; 3 from: of different concentrations; suitable range; Choose suitable filter; Calibrate colorimeter/zero <u>with water</u> ; measure absorbance/transmittance; Plot a calibration curve; read absorbance of sample; plus read value from graph At least 2 consecutive sentences with only one spelling mistake	5 + 1
е	2 from:	2
	catalysts; variable oxidation state; paramagnetic; high density; high mpt/bpt	Total:18

Question	Expected Answers	Marks
6a(i)	Name of reagent: hydrochloric acid/ sodium hydroxide allow sulphuric acid; Conditions: Moderately concentrated (4-6M) ; reflux (must have sensible reagent)	3
a(ii)	Must have diagram with at least 1 label to score full marks : 4 from: Covered beaker; Paper with spot of solution above solvent; At end four spots; Develop with ninhydrin/iodine/copper nitrate; Compare to controls/work out R _f values	4
b	Amino acid: glycine; Explanation: does not have chiral/asymmetric carbon atom/carbon atom attached to four different groups owtte;	2
C(i)	Lysine alanine glutamic acid Decreasing pH	4
C(ii)	$H_{3}^{+} H_{3}^{-} H_{3}^{-} H_{3}^{-} H_{3}^{-} H_{3}^{-} H_{3}^{-} H_{1}^{-} H_{1}^{-} H_{1}^{-} H_{2}^{-} H_{2}^{-} H_{1}^{-} H_{2}^{-} H_{1}^{-} H_{2}^{-} H_{1}^{-} H_{1$	4
	H ₂ O (1)	Total:17
		10tal.17